

F-06/02

Issue Date: 18/08/2020

Rev. No: 09 LAB 114

Accreditation No: LAB 114

Awarded to

Defense Science & Technology Organization (DESTO) Analytical Laboratory DESTO Labs Complex, Chattar HQ, Islamabad, Pakistan.

The scope of accreditation is in accordance with the standard specifications outlined in the following page(s) of this document. The accredited scope shall be visible and legible in areas such as customer service, sample-receiving section etc and shall not mislead its users.

The accreditation was first time granted on **31-10-2016** by Pakistan National Accreditation Council.

The laboratory complies with the requirements of ISO/IEC 17025:2017.

The accreditation requires regular surveillance, and is valid until 30-10-2025.

The decision of accreditation made by Pakistan National Accreditation Council implies that the organization has been found to fulfill the requirements for accreditation within the scope.

The organization however, itself is responsible for the results of performed measurements/tests.

PAKISTAN NATIONAL ACCREDITATION COUNCIL

<u>25-07-2023</u>	SD
Date	Director General

F-06/02

Issue Date: 18/08/2020

Rev. No: 09 LAB 114

Testing Laboratory.

Accreditation Scope of Defense Science & Technology Organization (DESTO) Analytical Laboratory DESTO Labs Complex, Chattar HQ, Islamabad, Pakistan.

Permanent laboratory premises X

Materials/Pr oducts tested	Testing field (e.g. environmental testing or mechanical testing)	Types of test/ Properties measured	Reference to standardized method (e.g. ISO 14577-1:2003)/ Internal method reference
Soil, /Solid materials, water/aqueous, liquid/organic samples	Environmental testing	Qualitative analysis for presence of schedule 1,2 and 3 chemicals (Ref: Convention on the prohibition of the development, production, stock piling and use of chemical weapons and on their destructions; Annex B, pp 49-54) or their precursors/degradation/ reaction products and chemicals listed in the list of Additional Nonschedule reportable chemicals (Ref; QDOC/LAB/WI/PT-04 Attachment 1) and non-schedule precursors/ reaction products which are one step away from schedule chemicals and whose phosphorus, sulphur, nitrogen and /or arsenic containing moiety is present.	Recommended Operating Procedures for Analysis in Verification of Chemicals Disarmament 2017 Edition, Editor Paula Vinnine, Vol 01, The Ministry of Foreign Affairs of Finland, University of Helsinki.
Azoxystrobin formulations	Pesticide Active Ingredient	Quantitative determination of Azoxystrobin (Active Ingredient)	ANA/SVVM/GC/Azoxystrobin GC-FID In-house Method based on CIPAC Method 571, Vol M, pg 10-17

25-07-2023	Sd
Date	Director

F-06/02

Issue Date: 18/08/2020

Rev. No: 09 LAB 114

Cypermethrin formulations	Pesticide Active Ingredient	Quantitative determination of Cypermethrin (Active Ingredient)	ANA/SVVM/GC/ Cypermethrin GC-FID In-house Method based on AOAC Official Method 985.03 (2012) pg 58-59
λ- Cyhalothrin formulations	Pesticide Active Ingredient	Quantitative determination of λ-Cyhalothrin (Active Ingredient)	ANA/SVVM/GC/ λ- Cyhalothrin GC-FID In-house Method based on CIPAC, Method 463, Vol E, pg-49-57
Pyriproxyfen formulations	Pesticide Active Ingredient	Quantitative determination of Pyriproxyfen (Active Ingredient)	ANA/SVVM/GC/ Pyriproxyfen GC-FID In-house method
Azoxystrobin formulations	Pesticide Active Ingredient	Quantitative determination of Azoxystrobin (Active Ingredient)	ANA/SVVM/LC/ Azoxystrobin HPLC In-house method based on CIPAC Method 649 Vol L
Acetamiprid formulations	Pesticide Active Ingredient	Quantitative determination of Acetamiprid (Active Ingredient)	ANA/SVVM/LC/ Acetamiprid HPLC In-house method based on CIPAC Method 649 Vol L pg-4-12
Diafenthuiron formulations	Pesticide Active Ingredient	Quantitative determination of Diafenthuiron (Active Ingredient)	ANA/SVVM/LC/ Diafenthuiron HPLC In-house method
Flonicamid formulations	Pesticide Active Ingredient	Quantitative determination of Flonicamid (Active Ingredient)	ANA/SVVM/LC/ Flonicamid HPLC In-house method
Imidacloprid formulations	Pesticide Active Ingredient	Quantitative determination of Imidacloprid (Active Ingredient)	ANA/SVVM/LC/ Imidacloprid HPLC In-house method based on AOAC Method # 997.12 Chapter 7, pp-116
λ- Cyhalothrin formulations	Pesticide Active Ingredient	Quantitative determination of λ-Cyhalothrin (Active Ingredient)	ANA/SVVM/LC/ λ- Cyhalothrin HPLC In-house Method based on NLA Method
Pyriproxyfen formulations	Pesticide Active Ingredient	Quantitative determination of Pyriproxyfen (Active Ingredient)	ANA/SVVM/LC/ Pyriproxyfen HPLC In-house Method based on CIPAC Method # 715 pp 181
Chloropyrifos formulations	Pesticide Active Ingredient	Quantitative determination of Chloropyrifos (Active Ingredient)	ANA/SVVM/LC/ Chloropyrifos HPLC CIPAC Method # 221.b Vol 1C, pg 2028-2031
Bifenthrin formulations	Pesticide Active Ingredient	Quantitative determination of Bifenthrin (Active Ingredient)	ANA/SVVM/LC/ Bifenthrin HPLC In-house Method

<u>25-07-2023</u>
Date <u>Sd</u>
Director

F-06/02

Issue Date: 18/08/2020

Rev. No: 09 LAB 114

Azoxystrobin formulations	Pesticide Active Ingredient	Quantitative determination of Azoxystrobin (Active Ingredient)	ANA/SVVM/NMR/ Azoxystrobin NMR in-house Method
λ- Cyhalothrin formulations	Pesticide Active Ingredient	Quantitative determination of λ-Cyhalothrin (Active Ingredient)	ANA/SVVM/NMR/ λ- Cyhalothrin NMR in-house Method
Chloropyrifos formulations	Pesticide Active Ingredient	Quantitative determination of Chloropyrifos (Active Ingredient)	ANA/SVVM/NMR/ Chloropyrifos NMR in-house Method
Pesticide Formulations and Technical Materials	Pesticide Active Ingredient	Measurement of density	Density bottle CIPAC Method MT-3, Vol F pg 11-20